Publication Bias:

- Is It Also Present In The Secondary Literature?

Reprinted from *Journal of Clinical Epidemiology*; 59(3):241-245. Carter AO, Griffin GH, Carter TP. Publication bias was identified in the secondary literature. Copyright 2006 with permission from Elsevier.
AUTHORS

Anne O. Carter MD, MHSc, FRCPC,
Glenn H. Griffin MSc, MEd, MD,
Thomas P. Carter BSc, MD
Publication Bias

- Tendency of investigators, reviewers, and editors to submit or accept manuscripts for publication based on the direction or strength of the study findings.

- In particular, bias associated with the direction of the findings being positive (finding a significant difference between two or more of the groups studied)
Background

- Good evidence of publication bias in the primary literature
- Is there publication bias in translation of evidence from primary to secondary literature?
- We chose to look at RCT`s of therapy
- Primary literature - Medline
- Secondary literature - ACP Journal Club
Methods

- Cross sectional survey of RCT’s of therapy between 1994 and 2002 in English in Medline
- Summaries of therapy trials in ACP Journal Club between same dates
ACP Journal Club

- Search engine was Ovid
- ACP Journal Club Database was searched for term ‘trial’
- All articles with ‘review’ in title were removed
- Limit to therapeutics
- Limit to August 1994 to October 2002
Medline

- Search engine Pubmed
- using Mesh term ‘therapeutics’
- Limits of RCT, human, Medline db,
- Abstract available, English, August 1994 to October 2002
- Random selection of 1000 taken
METHODS

Inclusion criteria:

- Single RCT of Therapy
- Had to report results
- Had to be a direct comparison between treatment and control groups
Data abstracted

- Trial result negative or positive
- Trial trying to find a difference or equivalence
- Sample size
- Blinding
- Multi-centered or not
- “No active treatment control” or not
- Pharmaceutical product or not
- Medical specialty – up to 3 per trial
- If positive, whether it favoured newer treatment
- If journal was on ACPJC selection list
Statistical methods

- p < .05 (2 tailed) considered statistically significant
- Differences in proportions tested for significance by Chi-square
- Continuous variable (sample size) was not normally distributed - tested by Mann-Whitney U
- Chi Square for trend calculated using EpiInfo 6
- All variables significantly associated with selection by ACP journal club entered a multivariate logistic regression to determine if selection for + outcome remained significant when rest were controlled
Results

- Medline search yielded 30,250 abstracts. 1000 were randomly selected, 831 met inclusion criteria, 206 (25%) of which were on list of journals from which ACPJC selects.

- ACPJC yielded 882 abstracts, 823 met inclusion criteria, rest were reviews.
Blinding of trials summarized in ACP Journal Club or catalogued in Medline p<0.01

- ACP Journal Club n=823
- Medline n=831
Health Field of trials summarized in ACP Journal Club or catalogued in Medline

- CVD p<.001
- Allergy p=.13
- Endocrine p=.13
- GI p=.02
- Oncol p<.001
- Renal p<.001
- Pulmonary p=.81
- ID p<.001
- Neuro p=.002
- Ortho p=.15
- Peds p=.34
- Psych p=.27
- Women p<.001

ACP Journal Club n=823
Medline n=831
Characteristics of trials summarized in ACP Journal Club or catalogued in Medline

Multicentred $p < 0.001$
No active Rx control $p < 0.001$
Pharmaceutical product $p = 0.90$
Favours new treatment $p = 0.04$

ACP Journal Club $n = 823$
Medline $n = 831$
Outcome of trials summarized in ACP Journal Club or catalogued in Medline $p<0.001$

ACP Journal Club $n=823$
Medline $n=831$
Multivariate logistic regression analysis of potential determinants of selection of Randomized Controlled Trials by ACP Journal Club n=1654

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Odds Ratio</th>
<th>95% Confidence interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larger sample size</td>
<td>1.001</td>
<td>1.001-1.001</td>
<td><.001</td>
</tr>
<tr>
<td>No active treatment control</td>
<td>1.327</td>
<td>1.040-1.692</td>
<td>0.02</td>
</tr>
<tr>
<td>Multi-centered</td>
<td>4.798</td>
<td>3.690-6.237</td>
<td><.001</td>
</tr>
<tr>
<td>Positive, aim difference compared to negative, aim difference</td>
<td>2.806</td>
<td>2.002-3.933</td>
<td><.001</td>
</tr>
<tr>
<td>Negative, aim equivalence compared to negative, aim difference</td>
<td>2.098</td>
<td>1.242-3.544</td>
<td>0.01</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>0.490</td>
<td>0.316-0.761</td>
<td>0.001</td>
</tr>
<tr>
<td>GI tract disease</td>
<td>1.642</td>
<td>1.110-2.431</td>
<td>0.01</td>
</tr>
<tr>
<td>Hematology/oncology</td>
<td>0.252</td>
<td>0.167-0.380</td>
<td><.001</td>
</tr>
<tr>
<td>Renal/Male urogenital disease</td>
<td>0.262</td>
<td>0.139-0.491</td>
<td><.001</td>
</tr>
<tr>
<td>Women’s health</td>
<td>0.380</td>
<td>0.230-0.628</td>
<td><.001</td>
</tr>
</tbody>
</table>
Results

- Distribution of positive and negative trials in journals from which ACPJC selects similar to medline (p=.74) and different from ACPJC (p=.00)
- Over time there was no change in Medline variables but ACPJC gradually increased quality of trials selected
- Drug trials were more likely to be multi-centered, blinded, and larger (P<0.01) but not more likely to be +ve or favour new treatment
Discussion

- Publication bias **DOES** exist in translation of therapeutic evidence from primary to secondary literature (at least for ACPJC).
- Could lead to overestimation of effectiveness of therapeutic interventions.
- Finding is not due to the journals ACPJC selects from but the articles it chooses to select from those journals.
Discussion

- Quality of Medline trials is not improving over time
- Many abstracts in Medline are of poor quality
- Drug trials were of higher quality & did not show higher rate of +ve outcomes or favor new treatment (surprise!)
Limitations

- Only ACPJC was studied
- Only trials published in English were studied—appropriate for ACPJC
- A few trials would appear in both databases
- Some -ve trials are -ve because they lack power. ACPJC is correct to not select these causing bias against negative trials. This is partially controlled in logistic regression by controlling for sample size
Acknowledgements

- I would like to thank my co-authors, who are in the audience today:
 - Dr. Glenn Griffin
 - Dr. Thomas Carter
Copyright notice

Reprinted from *Journal of Clinical Epidemiology;* 59(3):241-245. Carter AO, Griffin GH, Carter TP. Publication bias was identified in the secondary literature. Copyright 2006 with permission from Elsevier.