Roger Harbord

roger.harbord@bristol.ac.uk www.epi.bris.ac.uk/staff/rharbord/

A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints

Acknowledgements

- Co-authors
 - Jonathan Sterne, University of Bristol
 - Matthias Egger, University of Bern
- Teachers
 - Anne & John Whitehead, University of Reading

Aim

- Develop a modified version of the Egger test that:
 - has better controlled false-positive rate

while keeping:

- reasonable statistical power
- simplicity

Outline

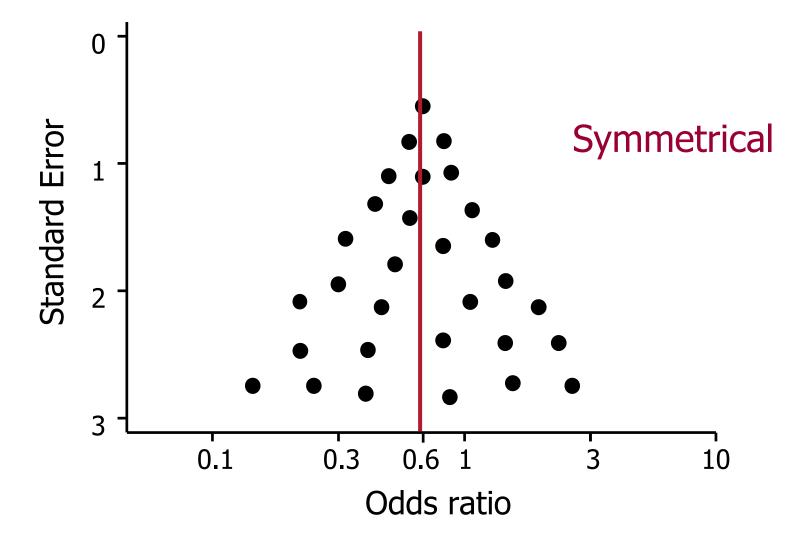
- What are small-study effects?
- How can we detect them?
- Why are existing techniques questioned?
- Is there a better method?
- How does it compare in simulations?
- Summary

Small-study effects

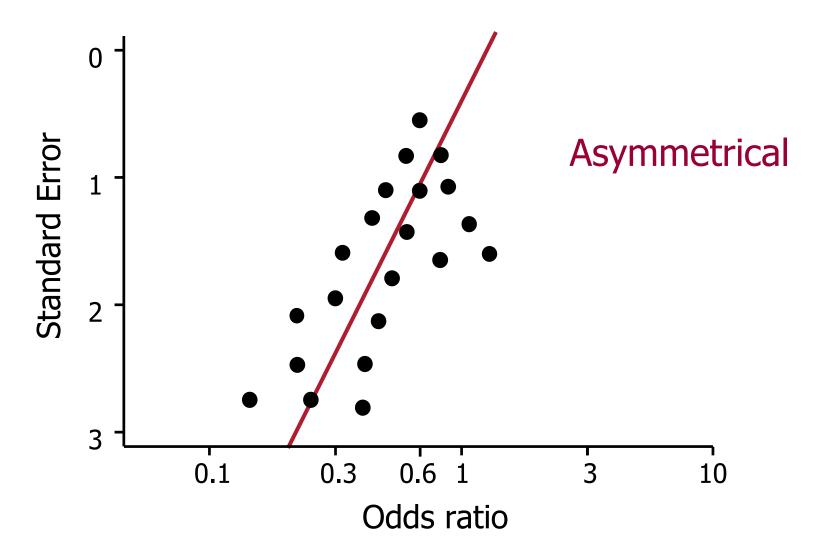
 a tendency for smaller trials in a metaanalysis to show greater treatment effects than the larger trials

- May be due to:
 - Publication bias
 - Smaller trials having poorer quality
 - Genuine differences in treatment effects

Funnel plot – no bias



6



Egger test: definition

- θ : treatment effect (e.g. log odds ratio)
- Regress θ on SE(θ) with weights 1/Var(θ)
- *t*-test of slope = 0

equivalently:

- Regress θ /SE(θ) on 1/SE(θ) without weights
- *t*-test of intercept = 0

(Egger et al. BMJ 1997, Sterne et al. J Clin Epi 2000)

2×2 table

	Disease	Healthy	Total
Treatment	<i>d</i> ₁	h ₁	<i>n</i> ₁
Control	d_0	h_0	n_0
Total	d	h	n

log odds ratio
$$\theta = \log\left(\frac{d_1 / h_1}{d_0 / h_0}\right)$$

$$\mathsf{SE}(\theta) = \sqrt{\frac{1}{d_1} + \frac{1}{h_1} + \frac{1}{d_0} + \frac{1}{h_0}}$$

θ and SE(θ) are instrinsically correlated for binary endpoints

	Disease	Healthy
Treatment	1819	Z 1
Control	15	5

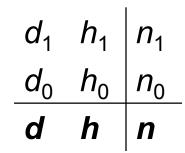
$$\theta = \log OR = \log \left(\frac{\frac{1}{19}}{\frac{2}{18}} \right) = \log(0.33) = -1.10$$

$$SE(\theta) = \sqrt{\frac{1}{18} + \frac{1}{2} + \frac{1}{15} + \frac{1}{5}} = 0.91$$

$$19 \quad 1$$

$$1.15$$

Macaskill test



 θ : log odds ratio

- Regress θ on *n* with weights *dh / n*
- *t*-test of slope = 0
- Properties
 - Better control of false-positive rate
 - Lower power

(Macaskill et al. Statist. Med. 2001)

A modified regression test $d_1 \quad h_1 \quad n_1$ $d_0 \quad h_0 \quad n_0$ $d_0 \quad h_0 \quad n_0$ $d \quad h \quad n$

• Define:

- Efficient score $Z = "O - E" = d_1 - dn_1 / n$

- Score variance (Fisher's information) $V = \frac{n_0 n_1 d h}{n^2 (n-1)}$

- Regress Z / V on \sqrt{V}
- 2-sided *t*-test of intercept = 0

Z and V have much lower sampling correlation

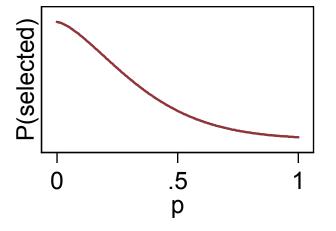
	Disease	e Healthy			
Treatment	18 19	2′1	20		
Control	15	5	20		
	3⁄3 34	76	40		
$Z = \frac{19}{18} - \frac{20 \times 33}{40} = \frac{19}{18} - 16.5 = \frac{2.5}{1.5}$					
$V = \frac{\begin{array}{ccc} 34 & 6 \\ 20 \times 20 \times 33 \times 7 \\ 40^2 \times (40 - 1) \end{array}}{\begin{array}{c} 1.31 \\ = 1.48 \end{array}}$					

Design of simulations

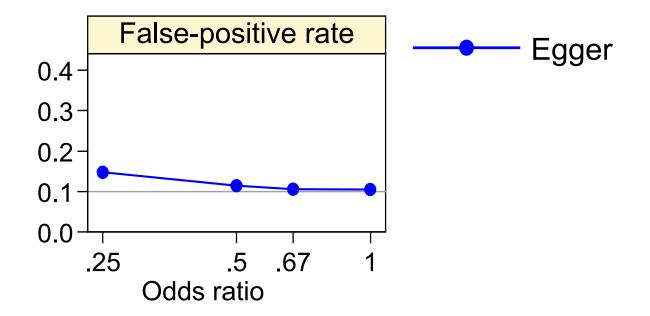
based on those of Macaskill *et al.* Statist Med 2001, Terrin *et al.* Statist Med 2003

- 20 studies per meta-analysis
 - 11 \times 100/group, 6 \times 200/group, 4 \times 300/group
- In control group, $P(event) \sim U(0.1, 0.5)$
- Set OR and between-study variance τ^2
- Simulate meta-analyses from binomials
 - 10 000 without selection
 - 10 000 'strong' selection: $P(selected) \propto exp(-4p^{3/2})$

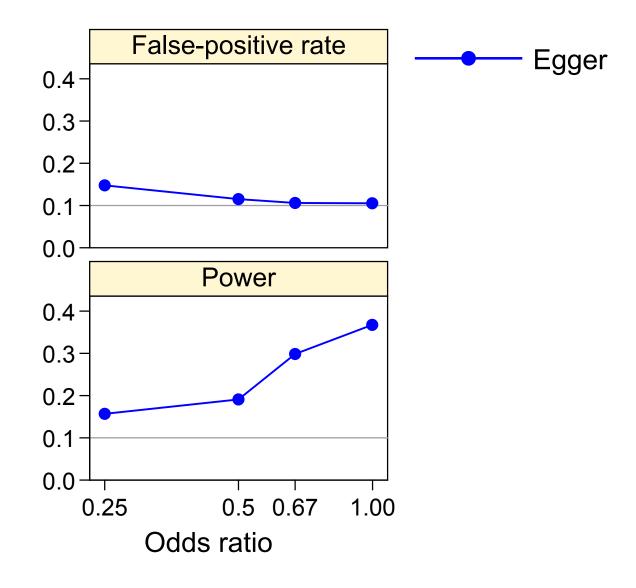
(Begg & Mazumbdar Biometrics 1994)



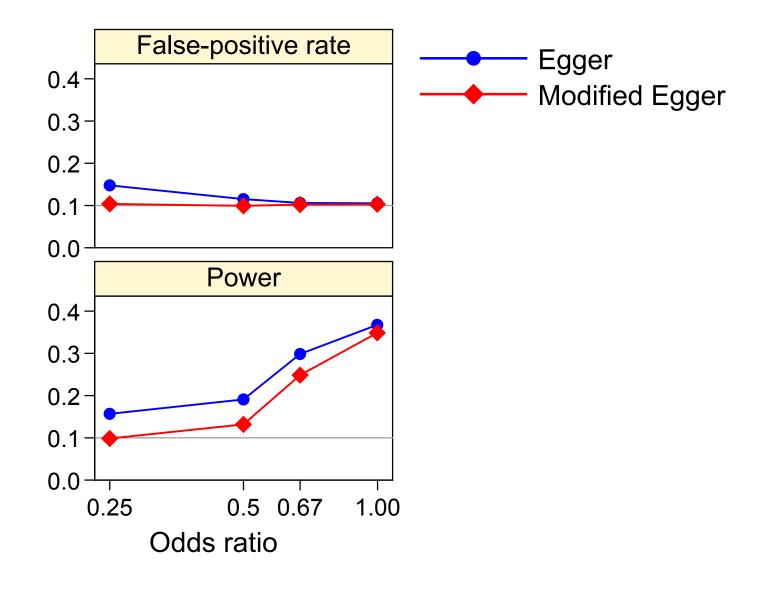
no heterogeneity



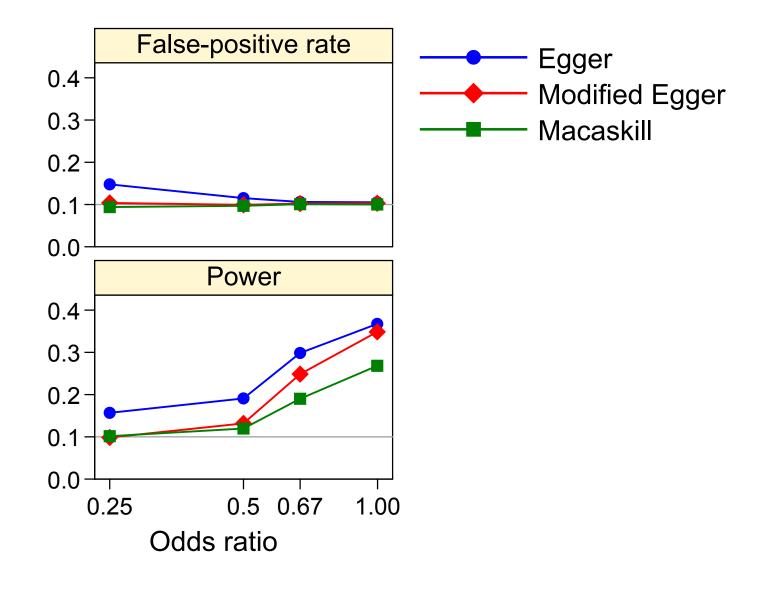
no heterogeneity



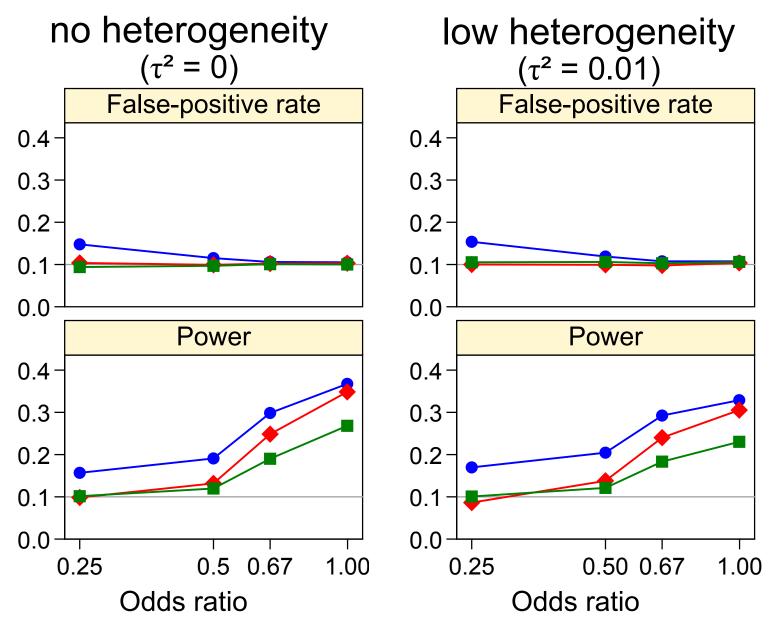
no heterogeneity

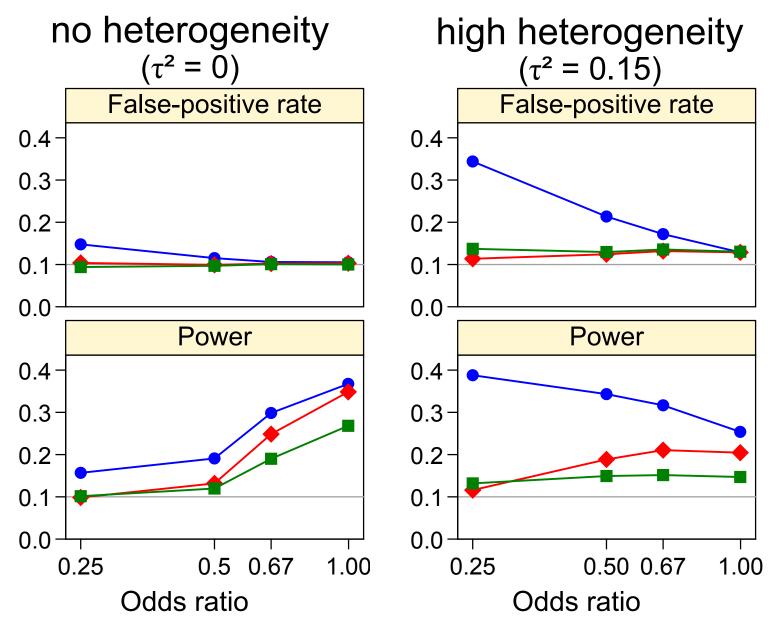


no heterogeneity



18





Summary of further simulations

- Greater variation in study sizes:
 - Increases false-positive rates of all three tests
 - Macaskill test worse than Egger test with heterogeneity
 - Modified Egger still has lowest false-positive rate, but around 0.2 when $\tau^2 = 0.15$ so not acceptable
- Further simulations based on 78 published meta-analyses:
 - suggest modified test has acceptable falsepositive rate for τ^2 less than around 0.04

Simulations – summary of results

- Modified test has:
 ✓ lower false-positive rate than Egger test
 ✓ similar power
- None of the tests work well with considerable heterogeneity (τ² more than about 0.04)

Not assessed in simulations

- Other measure of treatment effect
 - Simulations only for log odds ratios
 - theory applies to other effect measures
- Properties in unbalanced trials
 - likely to be poor if imbalance high –
 e.g. diagnostic studies, cohort studies

Summary

- Funnel plots look at study-size effects
- Tests based on them can have problems
- New test greatly reduces one problem
- All tests poor if heterogeneity substantial

Harbord RM, Egger M, Sterne JAC. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. *Statistics in Medicine* (in press).

Preprint at www.epi.bris.ac.uk/staff/rharbord

Roger Harbord

roger.harbord@bristol.ac.uk www.epi.bris.ac.uk/staff/rharbord/

A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints

